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KOMENCLATURE 

(: concentration of solute; 
(. concentration of solute at the interface; 

(‘Sf 1 concentration of solute corresponding to the 
stationary state; 

n. diffusion coefficient; 

; 
function defined by equation (19); 

k: 
function defined by equatiofi (14): 
constant defined by equations (10) and (1 I); 

4. function defined by equation (15); 

t, time: 
I‘n. maximum velocity; 
Y, Z. direction coordinates. 

Greek symbols 

6. liquid film thickness: 

‘1. parameter defined by equation (2); 

d). parameter defined by equation (3). 

INTRODUCTION 

IT IS well-established that the model of a stable interface 
between two fluid phases does not in general hold when 
heat and mass transfer takes place. These transfer processes 
cause interfacial concentration and temperature gradients 
which in turn arc accompanied by surface tension and 
buoyancy differences which induce interfacial flow. Numer- 
ous studies. both theoretical and experimental, have been 
made regarding the nature and effect of these interfacial 
phenomena which have been grouped together under the 
name ‘Marangoni effects’. and these investigations have 
been critically reviewed by Berg [ 11. 

In this department. when a series of measurements were 
made to determine gas liquid diffusivities. it was observed 
for systems where Marangoni instabilities were known to 
arise that a minimum value of diffusivity was always ex- 
hibited at some concentration. A recent investigation by 
Pratt and Wakeham [2] when measuring the mutual dif- 
fusion coefficient of ethanol-water mixtures demonstrates a 
minimum diffusivity value at approximately 0.27 ethanol 
mole fraction, the minimum value being about one third of 
the value for pure water at the same temperature. Similar 
behavior is reported for the system acetone-water by Tyn 
and Calus [3] and for a number of other binary mixtures 
given in a very detailed review by Dullien et cd. [4]. 

The purpose of this note is to ascertain if the hypothesis 
proposed has theoretical justification by examining the 
development of a linear stability criterion for the case of a 
non-linear concentration-dependent diffusion process. 

The problem under consideration is a case of forced- 
convection mass transfer in which viscous flow and diffusion 

Frc;. 1. Schematic of physical problem 

occur. It is considered that the absorption of the gas takes 
place in a laminar liquid film. The viscosity of the solution 
is not changed significantly by the absorption process. 
Furthermore, it is assumed that the diffusion process is so 
slow in the liquid film that the solute penetration distance 
in the film is small in comparison with the film thickness. 
The system is illustrated in Fig. 1. 

The differential eauation describing the orocess is (Bird 

(1) 

where 

For short contact times one can consider that the film is 
infinitely thick and moves with velocity u,,. Using the follow- 
ing transformations the equation (1) can be reduced to a 
two-parameter differential equation 

Thus. 

Equation (4) is not separable since D = D[c(q, c$)] and u, is 
x-dependent. By assuming a short contact time constraint, 
v;(.x) = r0 = a constant for a given system; or .x/S << 1. 
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With this assumption equation (4) reduces to 

The stability equations 
Let cat be the stationary solution of the time-independent 

equation 

(6) 

It is evident from equation (6) that c is only dependent on rl 
and satisfied the boundary conditions: 

c(O)=?; c(=)=O 

The problem now is to examine the stability criteria of the 
diRtsion equation subjected to small perturbations, @(4,~) 
about the stationary state. 

The perturbed concentration profile is thus 

c(4, rl) = G-t(V) + O(& ?). (7) 

Substitution of equation (7) in equation (5) with the approxi- 
mation that since the perturbation is small, only linear 
terms in CD, a@/&$, S/&l and &,/a$ exist. For ricsr/&$ = 0, 
one can obtain the following expression: 

aa, 
4-(1-&o) 

a4 

@. (8) 
Equation (8) can be solved by the method of separation of 
variables: 

Q(& 11) = f(+)s(?) 

and since 4 and 4 are independent variables we have, 

d! 
4-(1-&%) 

d+ 

.f 
= k = a constant (10) 

and 

D(csJ d”s dD dcs, dq 

_.__%A 

2r7ro+2-.- 2 
1 dcsr dr/ dq 

= k. (11) 

A close-form solution of the above equation being not readily 
available and since the primary objective is to test for 
stability conditions of the diffusion equation with a second- 
order concentration-dependent diffusivity, the following 
analysis is restricted to regions in the close’vicinity of the 
interface, i.e. for small x. 

Thus 

(12a) 

where 

U2b) 

cm) 

Taking the limit as 4 --* 0 in equations (I 1) and (12~) we have 

2 ,(,)ds_~.dD$!+ !dD_, q = 0, 

d$ J,T dc dn [ir d:,’ 1’ 
(13) 

This is a second order differential equation with constant 
coefficients and one can seek a solution readily with the 
substitution 

in equation (13). 
Hence, 

9(q) = e”’ 

or 

The general solution is 

.q(v) + A, e4”‘+ Az e*,” (16) 

with the boundary conditions: 

g(O)=0 and g(x)=0 

or 

g(q) = AI(e”l’f-eQf’). (16a) 

In order to satisfy the B.C. g(m) = 0. it is necessary that 
qi and q2 < 0, that is 

dD 

di- 
< 0. (17) 

Furthermore 

or 

4D(F)[;$-k] > 0, 

that is, 

4 d2D 
-__ 
n di.’ 

> k. (IX) 

Now, equation (10) can be solved using the inequalities (17) 
and (18) to give: 

k 
d4’ = - ~ In( 1 - +,)) 

4r” 

or 

.f(4)=fo, ’ k = j;,(l -&.,))--I (19) 

(1 -&o)+- 
4ro 

It can be seen readily that the perturbation at T = 0 (or 4 = 0) 
in equation (19) decays for 4 = 0 -P d, = l/r,. For k > 0, 
f(4) -+ co. In other words we have an instability. 

As k has to satisfy the inequality (18) instability is possible 
only when 

O,k;$ 

That is, only if d*D/dC’ is pmitior. 

(20) 
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Substitution of equation (20) into equation (15) gives a 
condition for instability: 1. 

4 dD 
~~. ? < Real(q) < 0. 

(v’n)D(?) dc 
(21) 2, 

It is evident that the more negative the term dD/d? is the 
larger the domain of q where instabilities occur. In the case 3. 
of a constant diffusion coefficient, inequalities (20) and (21) 
reveal that no instability can occur. 

The above analysis does not confirm the hypothesis that 
a minimum in the D- (’ relationship is necessary to induce 4. 
instability but since such a configuration will contain a 
negative dD/dc slope, such systems will give instabilities for 
concentrations up to the minimum value. Furthermore the 
analysis explains why some systems exhibit instability under 5. 
conditions of absorption but not desorption and vice-versa. 
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NOMENCLATURE 

Cartesian co-ordinates; 
cyhndrical’polar co-ordinates; 
non-dimensional polar co-ordinates; 
extent of the crack and remainder of the crack 
plane respectively : 
crack radius or semi-width; 
Kronecker delta; 
thermal contact resistance: 
odd function oft defined by equation (8): 
thermal conductivity: 
arccos I : 
heat flux density in ; direction; 
parameters of integration : 
temperature. 

INTRODUCTION 

IF A THERMALLY conducting solid ContainS a Small plane 
crack, the temperature field in the vicinity of the crack will 
be perturbed from that in an otherwise similar unflawed 
solid. The extreme case of a completely insulated crack 
leads to a classical mixed boundary value problem in poten- 
tial theory, a solution for the penny-shaped crack being 
given by Karush and Young [l]. However, a more realistic 
boundary condition is that of “radiation” across the crack, 
proportional to the local discontinuity in temperature. This 
leads to a mixed boundary value problem of the third type 
which is here solved for the penny-shaped crack and the 
“Griffith” crack, using a technique developed in another 
context [2]. 

The same solution applies to the problem of a cooled 
semi-infinite solid, part of whose surface is obstructed. 

It is hoped subsequently to use these results to find the 
thermal stresses in a solid containing a partially conducting 
crack. 

STATEMENT OF THE PROBLERl 

We define a system of Cartesian co-ordinates (z. r. ;) and 
polar co-ordinates (r, 0, -_) such that the crack lies in the 
plane z = 0, denoting the extent of the crack by A and the 
rest of this plane by A. 

We assume that there is a umform heat flux, C,O. in the 
z direction at the extremities of the solid, i.e. 

where T is the temperature and K the conductivity of the 
material. 

In view of the antisymmetry of the problem there is no 
loss in generality in taking 

T = 0. on .ri, (2) 

in which case the local temperatures on opposite sides of 
the crack must be equal and opposite. 

If the heat flux through the crack is proportional to the 
local temperature difference across it, we have 

yz = -2/i?- on A. : =o+. (3) 

where h is the constant of proportionality, 
Denoting the perturbation in temperature field due to the 

crack by Tr. such that 

and substituting for T into equation (l)-(3), we find 

T,=O. on -r. (6) 

(‘7, 2hT, ‘lo 

i; K K’ On 
.‘I, : = 0 + (7) 


